Hyperelliptic odd coverings

نویسندگان

چکیده

We investigate a class of odd (ramification) coverings C → ℙ1 where is hyperelliptic, its Weierstrass points map to one fixed point and the covering makes hyperelliptic involution commute with an ℙ1. show that total number minimal degree 4g \(\left({\matrix{{3g} \cr {g - 1} \cr}} \right){2^{2g}}\) when general. Our study approached from three main perspectives: if effective theta characteristic they are described as solution certain differential equations; then studied monodromy viewpoint deformation argument leads final computation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Most Odd Degree Hyperelliptic Curves Have Only One Rational Point

Consider the smooth projective models C of curves y = f(x) with f(x) ∈ Z[x] monic and separable of degree 2g + 1. We prove that for g ≥ 3, a positive fraction of these have only one rational point, the point at infinity. We prove a lower bound on this fraction that tends to 1 as g → ∞. Finally, we show that C(Q) can be algorithmically computed for such a fraction of the curves. The method can b...

متن کامل

Deterministic Encoding and Hashing to Odd Hyperelliptic Curves

In this paper we propose a very simple and efficient encoding function from Fq to points of a hyperelliptic curve over Fq of the form H : y = f(x) where f is an odd polynomial. Hyperelliptic curves of this type have been frequently considered in the literature to obtain Jacobians of good order and pairing-friendly curves. Our new encoding is nearly a bijection to the set of Fq-rational points o...

متن کامل

Classification of Elliptic/Hyperelliptic Curves with Weak Coverings against the GHS Attack under an Isogeny Condition

The GHS attack is known to map the discrete logarithm problem(DLP) in the Jacobian of a curve C0 defined over the d degree extension kd of a finite field k to the DLP in the Jacobian of a new curve C over k which is a covering curve of C0, then solve the DLP of curves C/k by variations of index calculus algorithms. It is therefore important to know which curve C0/kd is subjected to the GHS atta...

متن کامل

Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic

In this paper, we present a classification of elliptic curves defined over a cubic extension of a finite field with odd characteristic which have coverings over the finite field therefore subjected to the GHS attack. The densities of these weak curves, with hyperelliptic and non-hyperelliptic coverings, are then analyzed respectively. In particular, we show, for elliptic curves defined by Legen...

متن کامل

Classification of Elliptic/hyperelliptic Curves with Weak Coverings against GHS Attack without Isogeny Condition

The GHS attack is known as a method to map the discrete logarithm problem(DLP) in the Jacobian of a curve C0 defined over the d degree extension kd of a finite field k to the DLP in the Jacobian of a new curve C over k which is a covering curve of C0. Recently, classification and density analysis were shown for all elliptic and hyperelliptic curves C0/kd of genus 2, 3 which possess (2, . . . , ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2022

ISSN: ['1565-8511', '0021-2172']

DOI: https://doi.org/10.1007/s11856-022-2318-2